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Griesmer’s lower bound for the word length n of a linear code of dimension k and
minimum distance d is shown to be sharp for fixed k, when d is sufficiently large.
For k=6 and all d the minimum word length is determined.

l. Introduction

Denote by n (k, d) the smallest integer n such that there
exists an (n, k) binary linear code with minimum distance
at least d. In 1960 Griesmer (Ref. 1) proved that

n(k,d)= kE [d/2t] (see footnote 1)  (1.1)
=0

and showed that for certain values of k and d the inequal-
ity (1.1) was in fact an equality. In 1965 Solomon and
Stiffler (Ref. 2) simplified Griesmer’s proof of (1.1) and at
the same time generalized it to linear codes over an arbi-
trary finite field GF (q), where it takes the form®

n(d)=S [d/g"] (L2)

1Actually these bounds were obtained in the form
k-1
n(k,d)= _godi
where d, = d and

di = I_dm/q-l
It is easy to see, however, that
d: =[d/q'
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More important, however, Solomon and Stiffler introduced
the notion of “puncturing” a (¢* — 1,k) maximal-length
shift-register code and showed that for many more values
of k and d equality holds in (1.2).

In this note we shall use the technique of puncturing
to show that for fixed k, when d is sufficiently large the
Griesmer bound (1.2) is sharp. That is, we will show that
for each k there exists an integer D (k) such that if
d=D (k), then

n(k, 2 [d/q"]

As a matter of fact we will only prove this for ¢ = 2,
the extension to general q being easy but notationally
awkward.

We shall use the notation

g (k,

HMI

[d/27
in the rest of the paper.
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Il. The Theorem of Solomon-Stiffler

Let V, denote a k-dimensional vector space over GF (2).
Let S, S., - - - ,S: be subspaces of Vi of dimensions
k., ks, - - - , ks such that no element (except 0) of V is
contained in more than h of the S;’s. Then Solomon and
Stifler showed that there exists an (n, k) binary linear code
with minimum distance d, where

n=h(@—1)— 3 (2 —1)

t=1

and

~

i
d=h2 — 3 2 = d’  (seefootnote 2)

Furthermore if the k; are distinct, n = g{(k,d’) and so the
code is length-optimal; i.e., n (k,d) = g (k, d). Finally they
showed that a sufficient condition for the existence of such
subspaces S; is that

Ski=kh

1. Main Result

Taeorem: For each k there exists an integer D (k) such
that n(k,d) = g(k,d) if d=D (k).

Proof: We show that

will do. Write
d=d,+ (h—1)2¥*

where 1= d, = 2%, Then if

dé[k;]zﬂ

ot

Next we write 2% — d, in its binary expansion

it follows that

t
9 — dy = 3 g

i=1

O<ki<k, < <ki<k

2Tt can be shown that d = d’ unless the dual subspaces Sl com-
pletely cover V.
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Then
Sk=l42+ o +k—1=k(k—12=kh

and so by the results of Solomon-Stiffler quoted in Sec-
tion II, n(k,d) = g(k, d).

IV. Numerical Results:

We have been able to calculate the exact values of
n(k,d) for k=6 and all d. It turns out that the value

D(k) = [k—g—l“ g1

given in our theorem is extremely conservative; for ex-
ample for k=6 our theorem only guarantees that if d=96,
n(6,d) = g (6,d), while d==20 would do. Much of this
disparity arises from our use of the very weak sufficient
condition

Ski=<kh
for the existence of subspaces S,, Sz, - - -, S:.

Thus consider the example k = 6, d = 35. Examining
the proof in Section 3, we write 35 =3 + 1-32(h = 2),
and 32 — 3 = 29 = 24 + 2% + 22 + 2°, Thus we need to find
subspaces of V,; dimensions 5, 4, 3, and 1 which cover each
nonzero vector of V, at most twice. Since 5+4+3+1=
13 > 6+ 2, the condition of Solomon-Stiffler does not apply.
However, if the vectors of V, are coordinatized x =
(%1,%2, * - * , %), consider the following subspaces:

S, = {x:x, = 0} dimension 5

S, = {x:x, = x, = 0} dimension 4

S, = {x:x, = x5, = xs = 0} dimension 3

S, = {111111 and 000000} dimension 1
These subspaces have the desired property of covering
each nonzero vector at most twice, and so n (6, 35) =

2(6,35).

However, even if we knew exact necessary and suffi-
cient conditions for the existence of the subspaces S;, we
would not always get the best possible code. For k = 6,
d = 17 we would need subspaces of dimensions 4, 3, 2,
and 1 which covered every nonzero element at most once;
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but it is easy to see that any two subspaces of dimensions 4
and 3 in V,; must share at least one nonzero vector. Thus
the Solomon-Stiffler results could not yield a (37, 6) code
with d = 17. However in his original paper (Theorem 5)
Griesmer gave a construction which yields such a code.

We conclude the paper with a table of those values of
k and d with k=6 for which n (k,d) > g (k, d) (Table 1).
The column labeled “comments” explains how we calcu-
late n (k, d). “HB” means that the Hamming bound forces

n(k,d) > g{(k, d). “Search” means that a computer search
found no codes of length g (k,d). An entry like “n (5, 3)”
refers to the bound, proved by Griesmer, that

ntk,d)=d+n(k—1,[d/2])

Thus if n (k — 1,[d/27) > g (k — 1,[d/2]), then n (k, d)
> g(k,d) as well. We only list odd d because of the rela-
tionship n (k,d) = n(k,d + 1) — 1 for odd d.
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Table 1. Values of k and d with k = 6 for which
nlk,d) > glk,d

k d glk,d) nlk,d} Comments

5 3 8 9 HB; (9, 5) = (15, 11) Hamming shortened

5 5 12 13 Search; (13, 5) = (15, 7) BCH shortened

6 3 9 10 HB; (10, 6) = (15, 11) Hamming shortened

6 5 13 14 n (5, 3); (14, 6) = (15,7) BCH shortened

[ 7 16 17 n (5, 4); (17, 6) = (23, 12) Golay shortened

6 9 21 22 n (5, 5); {22, 6) found ad hoc?

é 1 24 25 n (5, 6); (25, 6) found ad hoc?

6 13 28 29 Search; {29, 6) = (31, 6} RM minus 2
columns

6 19 40 41 Search; (41, 6) = $.-S. construction w. dims.

3,33 Lh=1)

aTake as columns in the generator matrix the 6-place binary expansions
of: 2, 3,4, 6,8,9, 11, 12, 16, 17, 20, 21, 26, 32, 33, 38, 44, 51, 58,

61, 62, 63.

bTake as columns 1, 1, 2, 4, 6, 8, 10, 13, 16, 18, 21, 27, 28, 31, 32, 34,
37, 43, 45, 46, 53, 54, 57, 58, 60.
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